Geometric limits of cyclic subgroups of SO0(1,k + 1) and SU(1,k + 1)
نویسندگان
چکیده
We study geometric limits of convex-cocompact cyclic subgroups the rank 1 groups SO_0(1, k+1) and SU(1, k+1). construct examples sequences such G that converge algebraically whose limit strictly contains algebraic limit, thus generalizing example first described by Jorgensen for SO_0(1,3). also give necessary sufficient conditions a subgroup to arise as sequence subgroups. then discuss generalizations representations free groups, applications our constructions in setting.
منابع مشابه
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملPOS-groups with some cyclic Sylow subgroups
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
متن کاملInteger Valued AR(1) with Geometric Innovations
The classical integer valued first-order autoregressive (INA- R(1)) model has been defined on the basis of Poisson innovations. This model has Poisson marginal distribution and is suitable for modeling equidispersed count data. In this paper, we introduce an modification of the INAR(1) model with geometric innovations (INARG(1)) for model- ing overdispersed count data. We discuss some structu...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Subgroups of Cyclic Groups
In a group G, we denote the (cyclic) group of powers of some g ∈ G by 〈g〉 = {g : k ∈ Z}. If G = 〈g〉, then G itself is cyclic, with g as a generator. Examples of infinite cyclic groups include Z, with (additive) generator 1, and the group 2Z of integral powers of the real number 2, with generator 2. The most basic examples of finite cyclic groups are Z/(m) with (additive) generator 1 and μm = {z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2022
ISSN: ['1472-2739', '1472-2747']
DOI: https://doi.org/10.2140/agt.2022.22.1461